
A Testbed Environment for Interactive Storytellers
Federico Peinado

Depto. Ingeniería del Software e
Inteligencia Artificial

Facultad de Informática UCM, Spain
+34 913947599

email@federicopeinado.com

Álvaro Navarro
Depto. Ingeniería del Software e

Inteligencia Artificial
Facultad de Informática UCM, Spain

+34 913947599

alvaro.nav@gmail.com

Pablo Gervás
Instituto de Tecnologías del

Conocimiento
Facultad de Informática UCM, Spain

+34 913947639

pgervas@sip.ucm.es

ABSTRACT
Today there is a number of automatic systems for developing
interactive digital storytelling applications. Each one uses its
own architecture, data structure and user interface which make
practically impossible to create a single universal quantitative
metric to compare them. While these differences are intrinsic to
the artistic nature of narrative applications, developers of
underlying technology could be benefited from some “evaluation
standards” for these systems' functionality, interoperability and
performance. This paper describes a testbed environment that has
been designed as an example scenario for testing how different
interactive storytelling systems confront a set of “common
challenges” of this kind of applications. In order to avoid
additional programming efforts an adapter that allows the
connection of this environment with other systems has been
implemented and released as open source.

Categories and Subject Descriptors
D.3.0. [Programming Languages]: Languages Java, C++ and
Neverwinter Nights script.

I.2.1 [Computing Methodologies]: Applications and Expert
Systems – Games.

I.3.4 [Computing Methodologies]: Graphics Utilities –
Application packages, Virtual device interfaces.

I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism – Animation, Virtual Reality.

General Terms
Algorithms, Design, Experimentation, Human Factors,
Standardization, Languages.

Keywords
Interactive Digital Storytelling, Narrative Environments and
Game Based Interfaces.

1. INTRODUCTION
Today, members of the Interactive Digital Storytelling (IDS)
research community are building software systems that
automatically or semi-automatically control what happens inside
an IDS application. These systems are mainly designed to deal
with a characteristic conflict that can be found in any kind of
interactive narrative phenomenon, known as the Interactive
Storytelling Dilemma: “What should happen in a good interactive
narrative experience when the interactors decide to do something
different from what was initially planned by the authors?”.
Assuming the interactors’ interface offers enough freedom of
action and the authors have some ideas about the structure and
content of the experience, it is normal to find clashes between
both groups of participants.

These narrative controllers, usually conceived as artificial
intelligence artefacts, can take many different forms. Some of
them are impartial mediators between interactors and authors;
others are artificial directors with their own criteria about how to
guide the narrative experience. Some controllers are
implemented using a centralized approach, while others are built
on top of a distributed architecture of software agents.

IDS applications also differ a lot in the way the narrative stream
is presented to the user. Most of them use some kind of virtual
environment with narrative or dramatic qualities, such as visual
capabilities for showing text dialogs, representing 2D or 3D
characters, objects and locations, giving feedback to the user
through game-like HUDs, etc. These virtual environments are, of
course, interactive, so their states are continuously changing,
frequently in real time, depending on the interactors’ actions and
the behaviours implemented in the environment (action-reaction
rules, logical implications, physics, autonomous agents, hard-
coded events, etc.).

The current trend towards expanding the range of platforms and
media for interaction – to include mobile devices, multimodal
displays, affective interfaces... – suggests that any move that
made existing narrative controllers capable of interoperation
across a range of interfaces or platforms would broaden the
spectrum of possible interactions by providing both particular
media with powerful narrative control and narrative applications
with various enhanced means of presenting their output.

This paper describes a testing scenario, including the proposal of
a communication protocol and language designed for connecting
bidirectionally a testbed environment and a remote controller
system in a generic way, abstracting low-level details relative to
the composition of the multimedia effects of the virtual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. The Second International Conference on
Intelligent Technologies for Interactive Entertainment (ICST INTETAIN
‘08). January 8–10, 2008, Cancun, Mexico. Copyright 2008 ICST. ISBN
978-963-9799-13-4.

mailto:alvaro.nav@gmail.com
mailto:alvaro.nav@gmail.com
mailto:email@federicopeinado.com

environment and the internal representation of the whole model
that the controller uses privately.

The structure of the paper is as follows: Section 2 gives an
overview of the related work on this topic. Section 3 presents the
communication protocol of our proposal. Section 4 is dedicated to
the syntax and semantics of the new communication language.
The implementation of the testbed environment is described in
Section 5 and finally Section 6 and 7 are the discussions and
conclusions of this research.

2. RELATED WORK
The need of communication between narrative environments and
controllers has been there since the very first projects on IDS.
Paradoxically there are few identifiable literature references on
this subject, probably because much of that communication
happens internally in applications that integrate a particular
environment and its controller in a single application. In most
cases communication is just performed using a proprietary
format, with no special intention of establishing a general or
reusable language.

Three projects with communication mechanisms comparable to
our proposal have been chosen for consideration in this section.
The first one is the Interactive Drama Architecture [1] proposed
by Brian Magerko, the second one is Zocalo service-oriented
architecture [2], part of Thomas M. Vernieri M.Sc. thesis, and
finally the third one is the Shadow Door agent interface [3] by
Robert Zubek, which was indeed the starting point of the
development of our connection toolkit.

2.1 Interactive Drama Architecture
The Interactive Drama Architecture (IDA) is an IDS proposal
that includes an automatic director of the interactive experience
implemented as a rule-based system. This architecture is
interesting because it has features of a mixed approach, in which
both a centralized director (or drama manager) and semi-
autonomous (directed) characters collaborate in order to develop
an expressive, variable and interesting plot. The authors claim
that a completely distributed controller is more complex than this
semi-distributed structure in which only partial information
(relevant parts of the plot) is given to a concrete character in a
concrete situation of the story.

The system is integrated with an environment created with the
Unreal engine using something similar to a “software adapter”
for sending and receiving messages from/to the environment.
There are few technical details documented about the
implementation of this adapter, but authors explained that atomic
events that happen in the internal world model of Unreal are
generalized to simple predicates as MOVE-TO-ROOM(x, y),
more easily interpretable by the director.

The controller of the story sends messages that are basic
commands for a Non-Player Character (NPC) available at the
environment for the player to interact with, messages such as
“explore the environment”, “get this item”, “go to that room”,
“say something to the player”, etc.

2.2 Zocalo
Zocalo is a service-oriented architecture for creating interactive
narratives within game-based environments in which direction by
planning is performed by Web services running on different
machines. This project take serious considerations about
scalability, security and interoperability issues of IDS
applications’ software components. Unfortunately the .NET
implementation of this promising open architecture for
educational applications has not been released, but it is expected
to work with different game engines (as Unreal or Half-Life 2).

Extensions to different components distributed in different
operating systems are needed in order to communicate efficiently
each component of the network. These extensions can be
implemented in the form of a dynamically linked library (DLL)
or a TCP socket connection. XML Schemas have been
documented [4] for any XML message format that is sent and
received between services, across a communication layer called
Execution Manager - Socket Shell (EM-SS).

These formats are well documented, so they can be reused when
developing extensions to the architecture. The content of the
messages (mainly operators) has been found to be relatively
coupled with the semantic specification of Longbow’s input, a
main planner that this research group uses, but specially coupled
with the planning paradigm.

2.3 Shadow Door
Shadow Door is an agent control interface for Neverwinter
Nights (NWN) [5], a Computer Role-Playing Game (CRPG). It
allows external applications to control one single character in the
game. Using this interface developers can implement external
controllers, coding them in arbitrary languages (as Lisp or Java),
for the game play.

This interface is distributed as a DLL extension to the server
application of NWN that communicates with external processes
through a TCP socket. An extension to the game module called
Neverwinter Nights Extender (NWNX) [6] is necessary, and also
special scripts for receiving commands and passing them to the
character, and sending facts (observations) that happen inside the
world to the external controller. An Eliza-like example written in
Lisp is included to illustrate how the complete system works.

3. COMMUNICATION PROTOCOL
RCEI (Remote-Controlled Environments Interface) is a
communication protocol and language for IDS systems and
narrative environments. Thanks to this connection, any IDS
system can perform an interactive dramatic representation in the
testbed environment we have created with a reasonable level of
detail, with the sole additional requirement of adding RCEI
adapters at both ends of the connection.

Assuming the goal of connecting an interactive narrative
environment showing some realistic features with an AI-based
remote controller, the RCEI protocol is presented as a solution
dedicated to synchronize the sent/received messages between the
system and the environment (see Figure 1). This protocol has
some requirements which describe the characteristics of the
communication.

Figure 1. The RCEI communication protocol.

Firstly, the communication is blocking and synchronous, at the
same time the sending of messages must be strictly alternate (e.g.
starting with a first message of the system, then the answer of the
environment, another message from the system, etc.).

The remote controller must be the one to start the interchange
between both ends. This is because, generally, the answers of the
environment will be facts that will confirm the system’s
commands. However, the environment could send additional
unexpected facts such as consequences of long-term actions
produced by the execution of previous commands, or actions
performed by the interactors and other autonomous entities of the
fictional world.

Secondly, the first message of the virtual environment must be an
identification message, listing every domain-specific language
extension supported by the current module that is running and
also listing every condition referred to the initial state that the
environment must know.

Thirdly, the remote-controlled environment must be the one to
finish the communication by sending either an ending message to
the environment, or an “unexpected error” message when
something goes wrong at that side of the connection.
Additionally, if the controller has been waiting for too long in a
blocking state, expecting to receive messages, it will
automatically produce an “unexpected ending due to request
timeout” error.

4. SYNTAX AND SEMANTICS
The communication language is an extensible tool that allows
communicating commands and facts between RCEI-aware
systems and environments, with a syntax based on the tree-form
of the XML language.

Each RCEI message has a subject and a predicate. The subject
indicates the element affected by the action described, and it is
either an agent of the environment or the environment itself,
which means the action is probably location-based or a question
of general presentation of the world (e. g. the change between
day and night). The predicate contains the description of the
action, and it must contain a process entry, which identifies the
particular kind of action involved. This action can be relative to
the environment or any object or agent, as indicated by the
subject. Additionally, a command (or fact) may have other fields
which specify the parameters needed for each type of message.
These fields vary from one type of message to another.

Messages sent from the controller to the virtual environment act
as imperative statements, indicating actions that must be
performed in the environment. They are referred to as
commands. Messages sent from the environment to the controller
act as declarative statements, informing of actions that have
taken place in the environment. They are referred to as facts.

The commands and facts must have at least two arguments and a
maximum of four. At the present time we have distinguish some
different categories between the components of the narrative
environment; these are agents, objects, links and locations. The
objective of the establishment of this simple hierarchy is to
understand easily the structure and the functionality of the
different commands and facts.

There are three special pairs of messages with a different
structure: begin, end and synchronize. These messages allow
communication of the current configuration of the world in terms
of concepts currently existing in the world and the relations
between them. The functionality of these instructions -when they
are commands- is starting a new game, ending the current game,
or forcefully reconfiguring the current game by performing
changes (creating, deleting, moving…) in the available elements
of the environment. When the instructions are facts, they are
useful to report the state of the environment at the beginning, at
the end or at any significant moment –determined by the AI
system- during the game session.

4.1 Content of Messages
While the messages sent by the environment are interpreted as
facts that have been produced recently in the environment, the
messages sent by the remote controller are interpreted as “events
that should happen in the environment as soon as possible”. Due
to the real time and non-deterministic constraints there are no
guarantees that the actions expressed in those facts will happen.
This may depend on whether the virtual environment manages
commands by execution them on reception or by queuing them
up, and whether some mechanism is available for cancelling the
execution of commands unduly delayed in the queue to avoid out
of synch behaviour of characters.

The contents of the facts that the controller can receive from the
environment and the commands that it can send are slightly
different. The basic repertory of RCEI contains instructions
relative to the simulation domain of the environment, but the
language can be extended to support narrative or interactive
domain commands for the controller in order to manipulate the
HUD shown in the game engine and not only the things
represented in the virtual world.

The expressiveness of the instructions relative to the simulation
is inspired on Conceptual Dependency Theory [7]. A list of the
main instructions available is given in Table 1. Firstly, there is
an instruction called speak to perform conversations between two
agents. If we want to perform more advanced conversations, we
also can use the instruction change to modify the state of
characters involved in the dialog (emotion, attitude, mood, etc.).

 The instruction move describes the execution of small
animations of a given character, intended to convey visually some
activity or emotional change in that character. They can range

from physical activities such as drinking or reading, to modulated
verbal expression such as imploring or talking in anger or in
laughter, including conventional moves of social interaction such
as greeting or courtseying. In general terms, they allow
communication of events that are not easy to represent using the
visual capabilities of the environment.

There are create and destroy instructions for the creation of a
location in a determined situation (linked to other locations),
creation of a new agent or object in a determined locations, and
creation of links between locations, which describe basically
transitions from an origin location to a destination location.
Characters’ inventories or container objects may also be
considered as locations.

The movement of an agent towards a given location is
represented by the instruction go. Using the go command the
system can specify the place towards which an agent must move.
If no parameters are specified, a “random movement” is
assumed.

The change instruction is used for changing the weather or
ambient conditions of the virtual environment. It is also used to
change the objects’ state of things like doors, chests, weapons,
lights sources, etc. This instruction has a great versatility for the
simulation.

Table 1. RCEI Instructions

Process Arguments Description

speak subject: <agent>
dirComp: string

To speak with other
agents.

move

subject: <agent>
dirComp: “none”,
“drink”, “reed”,
“greeting”, “listen”,
“talk”, “implore”,
“furious”, “laugh”,
“victory”, “adore”,
“harass”, “reverence”,
“steal”

The agent will make
a simple animation
during a few seconds.
The kind of
animation is
determined by the
direct complement.

attack
subject: <agent>
dirComp: <agent>,
<object>

The agent will attack
and fight with other
agent or object.

go
subject: <agent>
dirComp(optional):
<agent>, <object>, <link>

The agent translates
himself to another
position in the
location. If there isn’t
direct complement
the agent realizes a
random movement
translation.

take subject: <agent>
dirComp: <object>

An agent takes an
object of the location.

drop subject: <agent>
dirComp: <object>

An agent drops an
object of the location.

give subject: <agent>
dirComp: <object>
indComp: <agent>

An agent gives an
object to another
agent. It is necessary
that the object must
be in the agent’s

inventory.

equip subject: <agent>
dirComp: <object>

An agent takes an
object of his
inventory and put it
on.

unequip subject: <agent>
dirComp: <object>

An agent takes an
object of his
inventory and takes it
off.

create
subject: <environment>
dirComp: <agent>
placeComp: <location>

The environment will
create a new agent in
the specific location
determined by the
place complement.

destroy
subject: <environment>
dirComp: <agent>,
<object>

The environment will
destroy a new agent
in the specific
location determined
by the place
complement.

change

subject: <environment>,
<agent>
dirComp: “weather”,
“sky”, “fog”, “light”,
“camera”, <agent>,
<object>
placeComp(optional):
<location>
modeComp(optional):
“open”, “close”, “state”.

The environment or
an agent will change
some properties.
This command can
be applied to change
the weather, the state
of a door, the
environment
properties, the state
in a conversation,
etc.

begin subject: <environment>
dirComp(optional): string

To restart a game. If
we put the name of
an existing animation
the environment will
reproduces it.

end subject: <environment>
dirComp (optional): string

To finish a game. We
can visualize a final
animation.

sync subject: <environment>

The synchronize
command produces a
synchronize fact by
the environment.

In a more specific domain of knowledge, there are some
instructions to fulfil active processes between different agents or
between agents and objects. These instructions have been
included due to the game-like orientation of the scenarios that
the testbed scenario is trying to generalize. They represent values
of actions to, for instance, unsheathe a sword, cast spells, deliver
an object to another agent, drop or take an object. These
instructions are: attack, take, drop, give, equip and unequip.

The specific instructions of the RCEI metadomain are begin, end
and synchronize. The purpose of these instructions is to identify
some basic virtual environment requirements. Its functionality
has been explained in the previous section.

5. THE TESTBED ENVIRONMENT
Using Neverwinter Nights as implementation tool, we have
developed a testbed environment for the evaluation of interactive
storytellers. This environment takes the form of a minigame
called “Capture the Pig!”. It is based on a fantastic medieval
background, presenting a big farmyard with four gates as the
main scenario. At those gates there are four different NPCs
representing farmers who have the goal of catching and killing a
restless and dangerous pig that is located inside the farmyard.
The player controls another character that act as a spectator of
the crazy hunting and, optionally, another participant. Finally
there are some weapons and other interactive objects distributed
across the scenario.

The set of possible stories generated within this environment is
constrained to the different strategies that the farmers may follow
in order to achieve the goal. There are different personalities,
with their corresponding NWN behaviors, that are randomly
assigned to the NPCs when the module starts. It is possible to see
farmers fighting their competitors before concentrating on their
final goal, looking for the strongest weapon before entering the
farmyard or running directly toward the pig with the only help of
their naked hands. Results of each pursuit and combat are not
absolutely predictable because of the random factor inherent to
NWN complex game mechanics, and characters are respawned
shortly after their deaths, so all this make easy to repeat the
experiment many times in order to obtain statistical data for
measuring the results. Each farmer add one point to his “score”
when the pig die by one of his attacks, while the pig add another
point when it go out of the farmyard. An screenshot of this
environment is shown in Figure 3.

The metrics we propose for the evaluation of different interactive
storytelling systems are based on the definition of a set of
“common challenges” that these systems must be able to solve
and then, counting how many times each system is successful in
solving the challenge, how much time it takes for solving the
challenge and how many interventions (in the form of RCEI
messages) it uses. Challenges are usually related to make the
story unfolds toward a specific situation or ending (also called
author goals in opposition to the characters' goals) at the same
time system's interventions are coherent, believable and not too
much intrusive, so other subjective or domain-specific criteria
can be added to our proposal (e.g. “divine” solutions as making
the pig or the farmers die by themselves are not allowed, etc.).

Capture the Pig! is presented as an environment that can support
concrete implementations of some of those challenges. Table 2
describes a list that cover a wide spectrum of possible drama
management situations in the context of this testbed
environment. More challenges can be defined and many of them
can be combined in complex ways, so the list does not pretend to
be a canonical one but a first proposal for a complete pack of
experiments. Due to the complexity of techniques that the,
virtually omnipotent, systems have, it is a good idea to force
several system to compete, assigning them contradictory goals.
This idea can be complemented by the use of “sparrings”,
specially hard-coded algorithms that gets an optimum result
solving a concrete challenge, performing illegal interventions if

necessary, stablishing a hard competition against the real systems
that are being tested.

Table 2. Capture the pig! challenges

Challenge Description

A farmer prevails
The system must make one concrete
farmer to have the biggest score at
the end of the experiment.

The pig prevails
The system must make the pig to
have the biggest score at the end of
the experiment.

A farmer fails
The system must avoid one concrete
farmer to have a good score at the
end of the experiment.

The pig fails
The system must avoid the pig to
have a good score at the end of the
experiment.

A team of farmers
prevail

The system must make some
farmers to create a team,
collaborating in having the biggest
collective score at the end of the
experiment.

No farmer prevails

The system must avoid any concrete
farmer to have a bigger score than
the others at the end of the
experiment.

High scores as possible

The system must make the farmers
and the pig to achieve their goals
the most as possible until the end of
the experiment.

Low scores as possible

The system must avoid the farmers
and the pig to achieve their goals
the most as possible until the end of
the experiment.

Balanced scores

The system must make the farmers
and the pig to have balanced scores
(collective score of farmers = pig's
score) at the end of the experiment.

While this connection toolkit have been conceived to be used by
a knowledge-base interactive storyteller, this environment can be
also controlled by a storyteller that distributes the knowledge
between a group of of autonomous agents, each one dedicated to
the control of one NPC.

The environment can also be tested manually using RCEI
Wizard. This application is basically a GUI (see Figure 4) for
users to test RCEI functionalities over their environments before
finally incorporating them into their projects. A default
environment, shown in Figure 5, is distributed with the toolkit.

Figure 3. An overview of the testbed environment: the group
of farmers surrounding the pig.

The RCEI language has been implemented using Java and XML
technologies in an API we called jRCEI [8]. The jRCEI
distribution is available on the Internet as an open source project
composed by different packages such as the parser, the serializer,
the API itself and some additional testing code. The distribution
also includes the RCEI adapter developed for NWN-based
environments, developed on top of the NWNX extension
mentioned before.

The RCEI protocol has been implemented using sockets with
serialized 8-bit ASCII strings (maximum length of 1024 bytes)
waiting 6 seconds and using TCP or UDP by the port 1890.

Figure 5. Editing the default environment:
different characters and objects in an open scenario.

6. DISCUSSION
RCEI assumes that the remote controller works in god-mode and
ideally it is omnipotent and independent from the virtual
environment. This last consideration is a realist characteristic
because the nature of both software systems (AI artifacts and
graphic engines) is very different and they do not have many
reusable features in common.

This interface is designed for working with knowledge-based
narrative controllers, independently of whether they are plot-
oriented or character-oriented, but it assume that at least lowest
level behaviour of characters is determined by the environment.

Although the C++ open source code of Shadow Door was taken
as the starting point of RCEI, the proposal presented in this
paper already constitutes a significant improvement on the
original interface. Shadow Door was intended to connect
individual agents to a virtual environment, so that it supports a
single NPC and it does not allow control of multiple agents nor
the environment itself. Syntax and semantics of Shadow Door are
significantly simpler than RCEI (only four types of commands
and two types of facts are allowed in Shadow Door) so
expressivity of the connection toolkit has been also improved.

It is known that RCEI has also some drawbacks, apart from the
obvious loss of control granularity due to the abstraction required
to communicate separate systems and to ignore particular details
of each possible IDS system. The first drawback is caused by the
lack of support for the possibility of connecting more than one
intelligent controllers (e.g. software agents or distributed
applications as web services, ec.). Other objection is that the
RCEI standard assumes that the system has a proactive
behaviour, and the environment a reactive behaviour, so if the
case is not that clear, the integration could be more complex.
Another issue is that every single command of the AI system try
to be executed in parallel, in a synchronous way. In the future,
we will consider the possibility to request that some orders may
be executed in order, synchronized and with determinate
parameters, but now the AI system is responsible of controlling
that low-level synchronization.

Figure 4. The user can send/receive commands to/from
the environment using this interface.

Finally, this system has been designed for immediate
communication in real time and it is not allowed to send
planning-like statements or delayed commands between the
controller and the environment: if something goes wrong, it must
be captured and solved on-the-fly.

7. CONCLUSIONS
Nowadays there are several researchers in the IDS field who are
developing software for controlling virtual environments. In some
cases, the testing environments are extremely simple because
researchers have no time for developing their own up-to-date 3D
game engine or integrating one of those engines with their
systems. Latest 3D virtual environments are very powerful tools
with enormous possibilities to develop IDS applications. RCEI is
trying to bring that potential to the intelligent system research
field in an easy way, allowing different results to be presented in
a coherent and similar way.

The objective of the RCEI project is to design and develop a
communication standard between interactive narrative systems
and virtual environments. If RCEI achieves our ambitious goal
and it becomes to be widely used for prototyping in the
community, adapters from one side and another could be reused
in many projects, saving much time for developers and allowing
development of studies about how different systems can create
stories with the same set of resources and solve challenges in the
same testbed environment.

The language proposed offers a basic but powerful vocabulary to
communicate with the environment. In the future we expected to
include extensions to the basic repertory of RCEI vocabulary,
adding new instructions (facts and commands) but without
coupling RCEI with any specific environment (creating new
adapters for NWN2 or Unreal 3) or IDS system specification.

RCEI is going to be used in the final distribution of the
Knowledge-Intensive Interactive Digital Storytelling (KIIDS)
system [9] but the project is open to the collaboration of other
researchers interested in contributing with their own
requirements and ideas.

8. ACKNOWLEDGMENTS
This research is funded by the Spanish Ministry of Education and
Science (TIN2006-14433-C02-01 project), Complutense
University of Madrid and the G.D. of Universities and Research
of the Community of Madrid (UCM-CAM-910494 research
group grant). Second author held a Beca-Colaboración 2006-
2007 grant from the Spanish Ministry of Education and Science.

9.REFERENCES
[1] Magerko, B., Laird, J.E.: Building an Interactive Drama

Architecture. International Conference on Technologies for
Interactive Digital Storytelling and Entertainment.
Darmstadt, Germany (2003)

[2] Young, M., et al.: Zocalo (2007)
http://zocalo.csc.ncsu.edu/

[3] Zubek, R.: Shadow Door: Neverwinter Nights NPC Control
Interface (2003).
http://www.zubek.net/robert/software/shadow-door/

[4] Cheong, Y.G., Michael R.: A Framework for Summarizing
Game Experiences as Narratives. Liquid Narrative Group.
Department of Computer Science North Carolina State
University, Raleigh, NC 27695.
http://liquidnarrative.csc.ncsu.edu/pubs/aiide06summ.pdf

[5] BioWare: Neverwinter Nights: Diamond Compilation Pack
(DVD-ROM). Atari (2005)

[6] Stieger, I.: Neverwinter Nights Extender (2004)
http://www.nwnx.org/

[7] Lytinen, S.L.: Conceptual Dependency and its Descendants.
Computers and Mathematics with Applications, 23(2-5):51-
73 (1992)

[8] Peinado, F. and Navarro, A.: RCEI, A Remote-Controlled
Enviroments Interface (2007).
http://federicopeinado.com/projects/rcei

[9] Peinado, F.: Knowledge-Intensive Interactive Digital
Storytelling system (2007)
http://federicopeinado.com/projects/kiids/

http://federicopeinado.com/projects/rcei
http://www.nwnx.org/
http://www.zubek.net/robert/software/shadow-door/
http://zocalo.csc.ncsu.edu/

	1. INTRODUCTION
	2. RELATED WORK
	2.1 Interactive Drama Architecture
	2.2 Zocalo
	2.3 Shadow Door

	3. COMMUNICATION PROTOCOL
	4. SYNTAX AND SEMANTICS
	4.1 Content of Messages

	5. THE TESTBED ENVIRONMENT
	6. DISCUSSION
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9.REFERENCES

